Remarks on Spectral Radius and Laplacian Eigenvalues of a Graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Laplacian spectral radius of a graph

Let G be a simple graph with n vertices and m edges and Gc be its complement. Let δ(G) = δ and (G) = be the minimum degree and the maximum degree of vertices of G, respectively. In this paper, we present a sharp upper bound for the Laplacian spectral radius as follows: λ1(G) ( + δ − 1)+ √ ( + δ − 1)2 + 4(4m− 2δ(n− 1)) 2 . Equality holds if and only if G is a connected regular bipartite graph. A...

متن کامل

Some remarks on Laplacian eigenvalues and Laplacian energy of graphs

Suppose μ1, μ2, ... , μn are Laplacian eigenvalues of a graph G. The Laplacian energy of G is defined as LE(G) = ∑n i=1 |μi − 2m/n|. In this paper, some new bounds for the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of Kn are presented. AMS subject classifications: 05C50

متن کامل

The Laplacian spectral radius of a graph under perturbation

In this paper, we investigate how the Laplacian spectral radius changes when one graph is transferred to another graph obtained from the original graph by adding some edges, or subdivision, or removing some edges from one vertex to another. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

On Laplacian Eigenvalues of a Graph

Let G be a connected graph with n vertices and m edges. The Laplacian eigenvalues are denoted by μ1(G) ≥ μ2(G) ≥ ·· · ≥ μn−1(G) > μn(G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for μ1(G)+ · · ·+μk(G) and lower bounds for μn−1(G)+ · · ·+μn−k(G) in terms of n and m, where 1 ≤ k ≤ n−2, and characterize the extremal cases. We also ...

متن کامل

Graph Embeddings and Laplacian Eigenvalues

Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n×n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix Γ; the best possible bound based on this embedding is n/λmax(Γ Γ). Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2005

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-005-0064-3